Etäisyyksiä

Suorita MAA4-opintojakso Eiran aikuislukiossa. Lue lisää.

Kahden pisteen välinen etäisyys

Kahden pisteen välisen etäisyyden kaava saatiin pythagoraan lauseesta ja se on

Ympyröiden etäisyys

Ympyröiden välinen etäisyys saadaan, kun lasketaan keskipisteiden välinen etäisyys ja vähennetään tästä säteet.

Esimerkki 1

Lasketaan alla olevien ympyröiden välinen etäisyys.

Muutetaan ympyröiden yhtälöt keskipistemuotoon

Ensimmäisen ympyrän keskipiste on (1,1) ja säde 3. Toisen ympyrän keskipiste on (10,13) ja säde 5. Lasketaan keskipisteiden välinen etäisyys.

Ympyröiden välinen etäisyys on 15-3-5=7

Mikäli vastauksena tulisi negatiivinen luku, tarkoittaisi se, että ympyrät leikkaavat toisensa. Jos etäisyys on nolla, ympyrät sivuavat toisiaan.

Pisteen etäisyys suorasta

Pisteen etäisyydellä suorasta tarkoitetaan pisteen lyhintä etäisyyttä suorasta. Pisteestä suoralle piirretty jana on tällöin kohtisuorassa suoraa vastaan. Etäisyys saadaan käyttämällä kaavaa.

Kaavassa osoittajassa itseisarvojen sisällä on suora normaalimuodossa ja x₀ sekä y₀  tarkoittaa pistettä, jonka etäisyyttä haetaan. 

Esimerkki 2

Määritetään pisteen (2,3) etäisyys suorasta y=-2x+4

Ratkaisu

Muutetaan suora normaalimuotoon

2x+y-4=0 ja sijoitetaan tämä kaavaan.

Kokeile

Voit liikutella suoraa sekä pistettä D.  Pisteestä D on piirretty kohtisuora jana suoralle. Janan pituus näkyy janan vieressä. 

Tarkista laskemalla pitääkö kaava paikkaansa.

Suoran etäisyys ympyrästä

Kun määritetään suoran etäisyys ympyrästä, lasketaan ympyrän keskipisteen etäisyys suorasta ja vähennetään tästä ympyrän säde.

Esimerkki 3

Alapuolella on suoran ja ympyrän yhtälöt. Määritetään suoran etäisyys ympyrästä.

Muutetaan suora normaalimuotoon

ja ympyrä keskipistemuotoon

Ympyrän keskipiste on (2,0) ja säde 2. Keskipisteen etäisyys suorasta

Suoran etäisyys ympyrästä on siis

Mikäli etäisyys on negatiivinen, leikkaa suora ympyrän kahdesta kohdasta. Etäisyyden ollessa 0, on suora ympyrän tangentti.

Harjoituksia

1. Määritä ympyröiden välinen etäisyys

Vihje

Saata ympyrät keskipistemuotoon

2. Määritä ympyröiden välinen etäisyys

Vihje

Saata ympyrät keskipistemuotoon

3. Määritä origon etäisyys suorasta, joka kulkee pisteiden (1,2) ja (4,7) kautta.

Vihje

Kaava

4. Määritä origon etäisyys suorasta, joka on suora y = 3x suuntainen ja kulkee pisteen (-2,3) kautta.

Vihje

Suora on muotoa y = 3x + b

Miten saat ratkaistua vakion b?

5. Määritä suoran y = 2x suuntaiset tangentit ympyrälle

Vihje

Tangentin etäisyys keskipisteestä on säteen suuruinen,

6. Suora y = kx + 2 on tangetti alapuoliselle ympyrälle. Määritä tangenttien kulmakertoimet.

Vihje

Saata ymyprä keskipistemuotoon.

7. Määritä suorat, joiden etäisyys suorasta 3x + 4y + 2 = 0 on 4

Vihje

Ratkaise pisteen (x,y) etäisyys suorasta.

8. Määritä yhtälöt alapuolisen ymyprän tangenteille, jotka kulkevat pisteen 

a)(1,2) 

b) (0,0)

c) (2,1)

kautta.

Vihje

Tangentit ovat muotoa y = kx +b. Ratkaise b ja sijoita se kaavassa b:n paikalle.

9. Määritä pisteen (3,2) kautta kulkevat suorat, joiden etäisyys pisteestä (-3,-1) on kaksinkertainen verrattuna etäisyyteen pisteestä (4,5)

Vihje

Muodosta pisteiden etäisyydet suorasta y=kx+b ja merkitse näiden avulla yhtälö.

10. Kun kuljettiin pitkin erästä suoraa, joka on suoran y = -2x suuntainen, origo ohitettiin 4 yksikön etäisyydeltä. Määritä tämän suoran yhtälö.

Vihje

Suora on muotoa y=-2x+b

Vanhoja YO-tehtäviä

Klikkaa tehtävää nähdäksesi vastauksen

1. a) Muodosta sen ympyrän yhtälö, jonka keskipiste on (2, 1) ja säde 2. Laske ympyrän niiden pisteiden y-koordinaatit, joiden x-koordinaatti on 1. 

b) Määritä a-kohdan ympyrän pienin etäisyys suorasta 3y = 4x + 20

Kevät 2018

a)       (x − 2)² + (y − 1)² = 4, y=1±√3

b)      Pienin etäisyys 3


2. Ympyrä sivuaa suoraa 3x −  4y = 0  pisteessä (8,6). , Lisäksi se sivuaa positiivista x-akselia. Määritä ympyrän keskipiste ja säde. 

Kevät 2014

r=10/3, kp=(10,10/3)

3. Laske ympyrän x² + y² − 2x + 4y = 0 keskipisteen etäisyys suorasta x + y = 2

Syksy 1970

3√(2)/2

4. Määrää origon etäisyys ympyrän x² + y² − 4x − 2y + 4 = 0 keskipisteestä. Piirrä kuvio.

Syksy 1972 (Lyhyt)

√5 

5. Laske pisteen (5, 4) lyhin etäisyys ympyrästä x² + y² −  6x + 4y + 4 = 0. Tarkka arvo ja kaksinumeroinen likiarvo.

Syksy 1974 (Lyhyt)

2√10-3≈3,3

6. Ympyrän x² + y² = 1 ympäri on piirretty kolmio ABC, jonka kaksi kärkeä ovat A = (1,3) ja B = (1,-2). Määritä kolmas kärki C ja kolmion ala.

Kevät 1977

C(-7/5,-1/5), A=6

7. Määritä ympyrän x² + y² + 6x – 8y – 11  = 0 keskipiste ja säde sekä origon lyhin etäisyys tästä ympyrästä.

Syksy 1979

kp=(-3,4), r=6

Etäisyys 1

8. Kuinka kaukana origosta on suorien 3x - 2y - 16 = 0 ja 5x - 4y + 16 = 0 leikkauspiste? 

Syksy 1991 (Lyhyt)

80

9. Kartalla, jonka yksikkönä on kilometri, erästä päätietä esittää suora 2x - 3y+4 = 0 ja siitä erkanevaa paikallistietä suora x + 2y - 6 = 0. Missä pisteessä tiet eroavat? Kuinka kaukana tienhaarasta on paikassa (4, 1) oleva talo? 

Syksy 1994 (Lyhyt)

Pisteessä (10/7,16/7), etäisyys 2,87 km

Osion perustehtävät